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THE APPROXIMATION OF SOLUTIONS TO THE BACKWARDS
HEAT EQUATION BY SOLUTIONS OF PSEUDOPARABOLIC EQUATIONS
by

DAVID COLTON*

Summary

It is well known that solutions of the backwards heat equation can be
approximated by solutions of a pseudoparabolic equation depending on a small
parameter €. The emphasis in this paper is on the mathematical problems
which arise in approximating solutions to initial-boundary value problems for
this perturbed equation. The approximation procedure we propose is obtained
through the development of a potential theory for pseudoparabolic equations,
the asymptotic evaluation of certain contour integrals, and results based on

a theorem of Levin in the theory of entire functions.

I. Introduction.

The problem of construccing solutions to the heat equation backwards in
time is dne of the classical improperly posed problems in partial differential
equations. Mathematically the problem can be formulated (in R3) in the fol-

lowing manner: For D a bounded domain in R3 find u(k,t), xe R3, such

that
A3u - in D x (O,to) (1.1a)
u =0 on 3D x (0,:0) (1.1b)
u(*,to) = ¢(§) in D (1.1c)

where ¢(§) is a prescribed function. As is well known ([15], [16]) in
general no solution exists to (1l.1a) - (l.1lc) and if it does the solution
does not depend continuously on the data 0(&) in any reasonable norm. OUne

approach to "solving" (1.1a) - (1.1c) is the method of quasi-reversibility as
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initially developed by Lattes and Lions ([11]), and it is a version of this
approach that we wish to discuss in this paper. The version we have in mind

is to replace the problem (l.la) - (1.1lc) by the modified problem

€ A3ut -4, + A3u =0 in D x (O,to) (1.2a)
u=0on 3D x (o,to) (1.2b)
u(x,to) = ¢(§) in D (1.2¢)

where ¢ is a small positive parameter ([7], [9]). Three obvious questions
immediately present themselves:
1) Does a unique solution to (1.2a) - (1.2c) exist for every € > 0
and does it depend continuously on the data 6(*)?
. 2) As € + 0 does the solution of (1.2a) - (1.2c) approach the solution
of (1.1a) - (1.1c) (if it exists!)?
3) What constructive methods are available for approximating the
solution of (1.2a) - (1.2¢c) for € > 0?
In most discussions of the method of quasi-reversibility attention is usually
focused on questions 1) and 2), and the answer to 3) is normally "use finite
difference approximations or partial eigenfunction expansions'. However for
multi-dimensional problems, large time intervals, and small values of the
parameter €, such methods are in general rather impractical. It is in fact
with this difficulty in mind that we have chosen to use the third order per-

turbed equation (1.2a) instead of the fourth order equation

2
€ A3 u-u + A3u =0 (1.3)

as proposed by Lattes and Lions ([11]). As will be seen, such a choice will
enable us to use potential theoretic methods and asymptotic analysis to
examine solutions of (1.2a) - (1.2c) for small €, thus providing a more practi-
cal method for constructing approximations to solutions of the backwards heat
equation in higher dimensions and for large time intervals.

Having tailored our model (1.2a) - (1.2c) to give a satisfactory answer

to question 3) does not of course excuse us from dealing with the first two
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questions! However, the question of existence, uniqueness, and continuous
dependence on the data is well known (c.f. [1]) and the second question has
been answered by Ewing in the following theorem ([7]):

Theorem 1: lLet u(x,t) be a solution of (l.la), (1.1b) such that

||“(§.to) -e@|l , <8, | luGe,0) ] g <M, where §,M are positive constants,
L L

and let v(x,t) be the solution of (1.2a) - (L.2¢) for ¢ = [log "/,]™'. Then

for every t > 0,

uvl] , < cCore
L

where C(t) does not depend on €.

An obvious drawback of Ewing's result is that the error bound depends
logarithmically on § instead of H8lder continuously as in the stabilized
quasi-reversibility method of Millar ([15]). A similiar problem also
arises if one uses quasi-reversibility methods in conjunction with (1.3),
or, in a different direction, Tikhonov's regularization method for solving
the backwards heat equation (c.f. [8], [18]). In our case this means that
in order to achieve accurate results we must choose the parameter € to be
quite small and assume that the data at t = t, is measured with a high
degree of accuracy.

Although our analysis in what follows is presented for the heat equation

in R3, analogous results can also be obtained in Rz (see Section 1V).

Il. Potential Theory for the Pseudo-Heat Equation.

Equation (1.2a) is a particular example of an equation of pseudo-
parabolic or Sobolev type and is usually referred to as the pseudo-heat
equation. Equations of pseudoparabolic type appear in a variety of areas of
application and have been the object of a considerable amount of attention in
recent years. For information concerning this class of equations as well as
an extensive bibiograph; e suggest consulting the recent book by Carroll and
Showalter ([1]). In this section we shall develop a potential theory for the

pseudo-heat equation ([3], [5]) with the aim of using these results in




Section ITL to construct approximations to the solution of (1.2a) - (1.2¢).
We shall develop this potential theory for the "forward" initial-boundary

value problem

€ A3ut -u + A3u =0 in Dx(O,to) (2.1a)
u = f(*,t) on 3D x (O,to) (2.1b)
u(ﬁ.O) =0 in D (2.1c)

where f(k,t) is assumed to be continuously differentiable and reserve until
Section III the modifications and applications of these results to the study
of (1.2a) - (1.2c).

We begin by defining the fundamental solution for (2.1a) by ([3], [5])

2
TR, t-1) = - ;%E § exp[-wR + Q—SE:I%1 dw (2:2)
1 1 - ew
o -1 = s
/e

where R = |x - El for x, £ ¢ R3 and the path of integration is a circle of

radius 6§ traversed counterclockwise about the point w = -l. If we now assume
€

that D is a bounded, simply connected domain with Lyapunov boundary 9D and
let p(E,T) denote a continuous density defined on 3D x [O,tol, we can define
a pseudo-heat potential by

1

t
2
u(x,t) = s ! p(E,sT) a%at- I'(R, t-t)dsdt (2.3)
0 ‘3D

where v denotes the unit normal on 3D pointing into D. 1In order for (2.3) to
be a solution of (2.la) - (2.1c) it is necessary to choose p(g,T) such that
(2.1b) is satisfied. To this end we differentiate both sides of (2.3) with
respect to t and let x -+ 3aD. Then from the discontinuity properties of
metaharmonic potentials we arrive at an integral equation for p(g,t) of the

form

AL g e (2.4)




€3

where z is a Fredholm integral operator over 2aD, kl is a Volterra integral
operator over [0,t], and kz is a Volterra integral operator over D x [0,t].
The kernels of these integral operators depend on T'(R,t) and its derivatives
(c.£.[3]). Due to the fact that € > 0 we can deduce the following Theorem
3n:
Theorem 2: Let C(9D x [0.t°]) be the Banach space of continuous functions
defined over 3D x [O,tol with respect to the maximum norm. Then
(% + T kl + kz)_l exists as a bounded linear operator on C(3D x [O,tol).
Hence any solution of (2.1a) - (2.1c) can be represented in the form (2.3) for
some continuous density 0(5,1).

In order to actually comstruct D(E,T) from (2.4) it is necessary to
determine accurate approximations to TI(R,t) ahd its derivatives for small

values of € and R >0, t > 0. Clearly it suffices to consider the function

2
KR,t) = - ﬁ f exp [-uR + 5] du
l-cw
1
lw - :,g' .8 (2.5)
_ exp(-t/e) . ) t
= xp [-u + —————]du.
Ve ni /e c(l-uz)
lu-1] = &

The evaluation of K(R,t) can be conveniently divided into three separate
cases ([5]):

1) R=0, t=0(1). In this case we expand exp (-——5—7—0 in its Taylor
e(1-u")

series in t and integrate termwise to arrive at

t exp (-t/e)

K(0,t) = -

1 t
0 /yn 25 71 (2.6)
where ¢(a,c;z) denotes the confluent hypergeometric function. From the

asymptotic behaviour of ¢(a,c;z) for large z (c.f.[6]) we have from (2.6)

that




N(/)(/) e e Ml
K(0,t) o (;) +0 (;) (2.7)

where (tx)n = Lrg,(('—:-‘;l g

2) R20, t=0(e). We again expand exp (-—t—z) in powers of t and inte-

e(1-u%)
grate termwise to obtain
j
2 exp(-t/ ) ® n+l n+ /
K(R,¢t) = A b 2y ra, & @9
= and (n+l)!In! ‘e o/e n+ /2

where Kn(z) denotes the modified Bessel function. For t = 0(e), (2.8)
can be readily approximated by truncating the series and applying the

Clenshaw-Luke method of backward recursion ([13], Section 11.8). An esti-

mate on the convergence ratio of (2.8) can be obtained by using the in-

equality

nt

R Y R 1 1

) b, e 2, E@el,) (2.9)
i W R B T,

3) R>Q, t=0(1). By deforming the circle lw = 1;‘ = & 4in (2.5) onto the
€
contour pictured below in Figure 1

C

A

Figure 1

we can rewrite K(R,t) in the form

1 R 2
K(R,t) = J expi{- — z + 2°) g (2)dz (2.10)
wi/t Jc /t .
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where
4
€2
gc(z) = exp[ J . (2.11)
t-ez

By using ad hoc methods, it is now possible to obtain a complete asymptotic

expansion for K(R,t) as € + 0 in the form
K0 = -1 exp(- o (10, G, &% ... + 4 E® + 0(O™)) (2.12)
2 = P~ %t et 2Ne n't t 5
where the coefficients d, are expressible in terms of Hermite polynomials

3
([5]1). In particular

1 R
i, =i gl
1 4 "z-/E)

1 e R
lhaldy Ry Big e R (2.13)
¢ a8 2k @ Pk

with similar expressions holding for the higher order coefficients. In
(2.13) En(z) denotes Hermite's polynomial.

The expansions in all of the above cases may be differentiated termwise.

I11. Approximation of Solutions to the "Backwards' Pseudo-Heat Equation.

We now discuss the problem of approximating solutions of initial-
boundary value problems for the "backwards' pseudo-heat equation defined
by (1.2a) - (1.2¢c). One approach proceeds as follows. By replacing t by
t,=ts and using the Fourier transform or Borel transform to construct a solu-
tion to the pure initial value problem, we can reduce problem (1.2a) - (1l.2¢c)

to an initial-boundary value problem of the form

€ AS": . e A3u =0in D x (O,to) (3.1a)
us= f(‘,t) on 3D x (O,to) (3.1b)
u(&,O) = 0 in D. (3.1c)

Note that (3.1a) - (3.1c) differs from (2.la) - (2.1c) only in a sign change in
the differential equation. Although this has no effect on the well-posedness

of the problem, as we shall see it unfortunately has serious implications on
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the problem of constructing approximate aolutions'for small values of the
(positive) parameter €. This is, of course, not surprising for the limiting
case as € + 0 1is now an improperly posed problem, i.e. the backwards heat
equation. If we follow the analysis of the previous section, it is seen that

we can represent the solution of (3.1a) - (3.1c) in the form

t
2
u(x,t) = E%-Io JaD 9(5,1)5%5? I'(R,t~t)dsdt (3.2)

where p(g,t) is determined as the solution of an integral equation of
Fredholm-Volterra type and the notation is the same as in (2.3). We observe
that the only difference between (3.2) and (3.3) is that the argument of the
fundamental solution is Tt-t instead of t-t. This.change. however, unfor-
tunately complicates the evaluation of T'(R,t) since we are now interested
in the asymptotic behaviour of T(R,t) for t < 0 instead of t > 0. Except
for the expansion (2.8) the analysis of Section II breaks down and we are
forced into adopting an ad hoc approach yielding expansions of TI'(R,t) in
terms of a series of generalized hypergeometric functions or a Bessel-
Laguerre series (c.f.[4]). Such expansions are of limited value in the evalua-
tion of T(R,t) for t = 0(1) and hence we are led to look for other approxi-
mation procedures.

To present such an alternate approach we return to the formulation

(1.2a) - (1.2¢c). We first note that if 1j 1is a sequence

lim _J
Jr= 3250
3

then in a sufficiently small complex neighbourhood of [0,t°] we can approximate

any analytic function defined in this neighbourhood by a finite linear com-

L
L
from a theorem of Levin in the theory of entire functions and the reader is

2
bination of functions taken from the set {e -Aj " This result follows

referred to (12}, p. 219, for details. From the results of [2] we can now

conclude that any continuous function defined in D can be approximated




in D by a linear combination of the functions

1
r /2 Jn+1/2 (Ajr) P:(coa 0)e

im¢ n=0,1,2,...
’-n<m<n

(3.4)
where Jn(z) denotes Bessel's function and P:(z) an associlated Legendre
function. We observe that

2

A
2 Jn+1/2(xjr) P%(cos 0) exp [im¢ - ESE LR O

2
1+ ex
]

i

%t (x,t) = s

is a solution of (1.2a). Although the set {unmj}

solutions when €=0([2]), for >0 the order of the equation is increased

is a complete set of

and hence except for exceptional circumstances we would expect that extra
functions would have to be introduced to supplement the above set. (An
exceptional case occurs for example when D is a sphere and (A?} are the
eigenvalues of the Laplacian in D.) In particular from the Runge approxima-
tion property for pseudoparabolic equations ([17]) and the results of Section
II (approximating the pseudo-heat potential defined on the cyiinder

S x [O,tol 30 x {O,col by numerical quadrature) we have the following
Theorem, where completeness is with respect to the L2 norm over D x [O,tol.

Theorem 3: Let (Aj} be as in (3.3) and let {gj)j-l be a dense set of

points on a sphere S D D. Then the functions

t
2
an(got) = J 1“ 3331’ r(lﬁd - *I, t-t)dt

0

_1/ m Az

unnj(k.t) i Jn+1/2 (Ajr) P (cos ©) exp [im¢ - I:Tii-t]
exj
where v = j/lﬁ I form a complete set of solutions to (1.2a) defined in

D x [O,tol.
Now let (Yn):_l denote the complete set of functions defined in
Theorem 3. In order to find an approximate solution to (1.2a) - (1.2¢c)

we minimize the functional

67
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N N
e e ¥ Gt) - oG] +1lz ev .ol (3.6)
oy Eug) T G 12) | me1 BRCN2000 o [0,t 1)
N
and define the approximate solution to be I ann(k,t). The functions Wn
n=1

can be evaluated by using existing tables for the computation of Bessel and

Legendre functions in combination with the results of Section II to approxi-

mate 5%;? I [g - x|, t-1). Due to the fact that (1.2a) - (1.2c) is well
posed, the minimization procedure indicated above is stable. Following
Gaponenko ([10]) we require that the minimization of (3.6) allow not only for
the variation of the coefficients cn but also for the basis functioms Yn

themselves, i.e. by considering 53' R e i, and A, =R, L., N, to

i
be variables as well. Thus we are led to the problem of finding the minimum
of a function of the 6 N variables Re s Im Cyo 53 = (E(;). C(i), 5(3)), Aj’

where 1 < j < N. A related minimization problem is considered in [10], to-
gether with its numerical implementation by the conjugate gradient method, and
a similar approach for elliptic boundary value problems has also been discussed

by Mathon ([14]).

IV. The Backwards Heat Equation in RZ.

The analysis of the previous sections can be extended to treat the
backwards heat equation in Rz, and in this section we briefly outline the
necessary modifications. Theorem 1 is valid in any number of dimensions. A
potential theory for the two dimensional pseudo-heat equation can be developed

exactly as in Section II where the fundamental solution is now defined by

2
T(R,t=1) = - ;% § K, (uR) exp [%—1521%] dw (4.1)
'“’- ll_s 1l - ew

(>

with Ko(z) denoting a modified Bessel function of order zero. From [6] we




have the representation
-z8 , 2 —1/
K (2) = e (s°~1) 2 ds (4.2)
9 1
and hence from (2.5) we can write
r
T(R,t) = K(Rs,t)(s™ ~ 1) "2 ds. (4.3)
1

Expansion formulae for T'(R,t) can now be obtained for R>0, t=0(e) from
(2.8) and for R>0, t=0(1) from (2.12) since these expansions can be inte-
grated termwise with respect to R over the range (l,»). In particular from

(2.12) we have

- 2.3 1
1 R's 2 -/ €
E(R, 1) = —=—— J exp (- —ZE_) (s =~1) "2ds+ O(;)

wt 1
b T 2 1
R R7p 2 ==/ €.
= exp (-~ 5= I exp (- ) (u© - 1) 2 dy + 0(=) (4.4)
Jime o o ;

2 2
exp (- %E) Ko(%z) + 0(%)-

vart
The coefficients of the higher order terms can be expressed in terms of
Whittaker functions. Finally, the analysis of Section III proceeds in the

1
same manner except that the functions r /2 J (A, r) Pﬁ(cos O)eim¢

1
o/, g
+1in0
are now Jn(xjt)e- .
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